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Computer-aided drug design tools can generate many useful and powerful models that explain
structure-activity relationship (SAR) observations in a quantitative manner. These models
can use many different descriptors, functional forms, and methods from simple linear equations
through to multilayer neural nets. Using a model, a medicinal chemist can compute an activity,
given a structure, but it is much harder to work out what changes are needed to make a
structure more active. The impact of a model on the design process would be greatly enhanced
if the model were more interpretable to the bench chemist. This paper describes a new protocol
for performing automated iterative quantitative structure-activity relationship (QSAR) studies
and presents the results of experiments on two QSAR sets from the literature. The fundamental
goal of this work is to try to assist the chemist in his search for what to make next.

Introduction

The quantitative modeling of structure-activity re-
lationships is a cornerstone of modern medicinal chem-
istry, in all its various forms, from classical Hansch-
type (2D) QSAR through to pharmacophore modeling,
3D-QSAR (for example, CoMFA analysis) and docking.
However, anecdotal evidence suggests that many pow-
erful models are not being properly used to drive the
design of new compounds. There seems to be a tradeoff
between statistically rigorous models that are hard to
interpret and more visual models that make weaker
predictions but display their results in a chemically
intuitive manner. If models are being used by a medici-
nal chemist, it is often by entering one structure at a
time or by constructing a Markush-like library, which
in itself is a tedious process. The fundamental question
this work tries to address is the plea from the bench
chemist, “What do I make next?”.

Several approaches toward making 2D-QSARs more
interpretable have been developed. In some cases, it has
been possible to distill the SAR down into simple rules,
the best example of which is the rule-of-5 for bioavail-
ability.1 The extent to which the rule-of-5 has become
entrenched in the psyche of medicinal chemists is a
powerful demonstration of how models can and should
influence the design process. Inductive logic methods
try to employ a similar approach.2,3 Simple rules can
be very powerful tools to give to the bench chemist. The
next approach is to restrict the QSAR model to the
descriptors that one could reliably interpret, a strategy
pioneered by Abraham4 in his work on physicochemical
property prediction. A body of knowledge and experience
is built up around the descriptors, based on prior
models, allowing the latest model to be interpreted in
context. This does, however, limit the number and type
of descriptors used. Techniques that color the atoms and
bonds according to whether the fragment contributes
positively or negatively to the model (holographic QSAR5)

also have a role to play, but again are restricted to
fragment-based descriptors. It would be preferable to
have a general method for interpreting QSARs. Auto-
mated iterative design takes a QSAR model and a
structure and tries to use the model to suggest improved
structures. This alone can be helpful to the chemist, as
he can see what changes in the structure impact
activity. It also helps the chemist to navigate vast
regions of SAR space quickly. There is a critical issue
in using QSAR models, particularly in a blind, auto-
mated fashion: extrapolation. QSAR models will return
predictions regardless of whether the prediction is
sensible. For example, if the model says that activity is
proportional to molecular weight, an automated struc-
ture generation program will try to add as many atoms
as possible, leading to absurd suggestions.

The paper is laid out as follows: in the Materials and
Methods section, an overview of the process of auto-
mated iterative design is presented, followed by more
detailed descriptions of the individual components and
strategies. Two generic QSAR models derived from the
literature are used to explore which combination of
methods and strategies seem to work well. We then
discuss the potential issues with the procedure in more
detail, suggesting areas for further research.

Materials and Methods

The process of iterative design can be broken down into
simple modules: application of the QSAR model, generation
of new ideas, filtering of the ideas, and selection of ideas for
further work. The flow of ideas is outlined in Figure 1. This
translates into some simple pieces of code that score a
compound in a QSAR, perform substructure searching, gener-
ate novel structures from a set of seeds, test for extrapolation,
and select structures to investigate further. The code has been
written using Perl6 as the glue and readily available third-
party programs as the building blocks, making the program
easy to implement on many different operating systems.

Application of the QSAR Model. It is assumed that a
robust QSAR model for the data set of interest has already
been generated and that this model can be used noninterac-
tively. In its simplest form, we require a module that can read
a 2D structure and return a prediction or score. The QSAR
module can therefore be of any form or complexity, providing
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this requirement is met. In this work, linear QSAR models
will be used, but the method is equally applicable to CoMFA
models or docking scores, provided all the information neces-
sary to use the model can be extracted from the 2D represen-
tation of the molecule. We have been able to wrap pharma-
cophore models, docking protocols, and simple CoMFA models
in this manner. However, in the case of the more interpretable
models such as CoMFA or docking, visual study and design is
still the preferred route. For the purposes of this research,
QSAR models were generated using the GFA module (part of
the Cerius2 modeling suite7), with default settings for all
parameters. Structures and activity values were taken directly
from the literature. Once a model had been generated, a file
of the commands required to score a novel structure was
created. This file can be replayed to use the model to predict
the activity of any new structure.

Generation of New Ideas. The engine for generating new
ideas lies at the heart of the process. Two engines have been
examined, THINK8 and RandSmi, an in-house program that
randomly permutes structures. The strategy used in THINK
is to apply a series of transformations (for example, changing
H to F, or Me to Cl). The transformations can also be given
weights, which determine the relative probabilities that each
transform will be used. The resulting molecules are assessed
against substructural filters and QSAR models, before an
annealing step is used to select molecules sent back to the user.
There is an optional step for looking at similarity to known
active and inactive molecules. This was not used here for the
sake of generality; we want to be able to employ any structure
generator that might be available.

RandSmi randomly permutes a smiles string using libraries
of primitive operations, like “add double bond” to change a
single bond into a double bond. The types of operation are very
similar to those found in the menus of most chemical structure
drawing packages: a partial list is given in Table 1. Each
operation has an associated probability that governs how
frequently it is used. The maximum ring size that can be
generated was set to 7, and the program was set to produce
100 new structures from each input structure.

Filtering of Ideas. Chemical Rejection. A fundamental
issue in the de novo generation of structures is the retention
of chemical sense and feasibility. The chemical rejection
strategy was designed to screen out structures that are highly
likely to interact nonspecifically with an assay system, for

example, acylating agents, nucleophiles, electrophiles, or redox
agents. The substructures used in this work were taken from
earlier work on analyzing corporate databases, HTS screens,
and third-party offerings.9-12 These rules are fairly mature and
can be used with confidence. These have been implemented
as a series of substructure filters and were used in all
experiments.

The concept of a privileged substructure or scaffold has also
been employed. Knowledge of the SAR or intellectual property
factors may dictate that a key substructure or scaffold is
retained. This can be specified, so that almost all changes, or
idea generation, occur outside this scaffold. This has been
implemented as a simple postgeneration filter: structures that
do not contain the key substructure are penalized by dividing
their score by a bias term of 1.05. This will allow structures
missing the privileged substructure to become new ideas, but
only if they are radically better. It would be more efficient to
tie this into the actual generation algorithm, but one would
lose the modularity of the current scheme. Although not
described here, it would be possible to force the generator to
avoid substructures in competitor patents or in the literature
(a localized rejection scheme). Synthetic feasibility is always
a consideration for structure generation programs, as it is
important to generate structures that appeal to the bench
chemist. Methods for assessing synthetic feasibility or com-
plexity have been described,13,14 but the reliability of these
models is still questioned by medicinal chemists. Methods for
predicting synthetic feasibility suffer from the lack of objective
data as to what in practice would be hard to make. These
methods have not been implemented here, as the use of the

Figure 1. An overview of the automated iterative design process.

Table 1. Operations Used by RandSmi To Permute Smiles
Strings

operation
relative

probability

add a double bond 0.5
remove an atom 1.0
decrease bond order 0.8
make or break an aliphatic ring 0.4
move fragment from one atom to another 1.0
swap adjacent atoms 1.0
change C to N or O 0.4
change O or N to C 0.6
add a fragment from a library 0.6
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privileged substructure seems to perform a similar function
in the chemists’ eyes. The chemist can focus the change made
to regions of the structure that he already knows how to
manipulate. There is a price to be paid in terms of the
reduction in the space that can be searched. The price is
worthwhile, as no QSAR is perfect and speeding up the drug
discovery cycle by getting experimental data to improve the
model is probably more important.

QSAR Filtering. The similarity principle15 says that
similar molecules should have similar biological profiles. The
key question then is how to measure similarity. The approach
used here is to define the distance between two objects in terms
of the descriptors in the QSAR model, on the grounds that
these have already been shown to describe the observed
activity. The structures used to construct the QSAR model
form the training set. Each structure can be represented by
the vector of descriptors. Distances can be measured between
these vectors, to provide a measure of similarity. Any structure
that falls outside the bounds of allowed space can be discarded
both as an extrapolation outside the knowledge contained in
the QSAR and by invoking the similarity principle. The bounds
of space can be set as follows.

Unlimited: this can be used to investigate the effectiveness
of the bounded strategies.

Maxmin: the maximum and minimum values plus a toler-
ance of each descriptor.

Threshold: a maximum distance to the nearest vector in
the training set

There is also a choice of distance metrics (Euclidean or
Manhattan), the normalization strategy, and whether to use
a hard cutoff or a (Gaussian) penalty function. Normalization
is performed by descriptor to produce a range of 0 to 1. Using
normalized distances, a cutoff of 0.1 (10%) can be used, to
reflect the usual level of precision in the QSAR model. A
preferred approach is to set the value of the distance cutoff
by clustering the training set in the same descriptor space as
the QSAR and then visually examining the dendrogram to
estimate a fusion distance. The Gaussian function was set to
have an acceptance rate of 70% at the cutoff chosen.

Selection of Ideas for Further Examination. The
process of selection can be summarized very simply: Start with
an idea and then for a given number of iterations, take the
next idea off the pile and try to make it better. New ideas that
do not look sensible are discarded, and the remainder are
added to the pile. This cycle is continued until there are no
more ideas or the number of iterations is exceeded. Structure
generation is a stochastic process, and there is a tradeoff
between the amount of sampling (structures generated) and
the time taken. If this tool is to be of any value in an interactive
session, cycles must be performed in minutes. It should also
be possible to leave the generator running in batch. As a
further filter, compounds that are identical to those seen before
either from the SAR set or from previous rounds of generation
are removed, to prevent recycling. The strategies used to
choose the structures for the next iteration are as follows.

Best: only the top compound.
Elite: the N best compounds, usually 5 or 10.
Better: everything that shows a predicted improvement over

the previously discovered best activity.
MC: Monte Carlo selection using the previously discovered

best activity as the reference point.
Manual: the chemist makes the choice.
Chemical Transformations. The chemical transforma-

tions govern the changes that can be made to a structure by
the program. They do not have to be viable one-step chemical
reactions, but they should capture the sort of changes a
chemist might make to a molecule during optimization, for
example, changing a methyl group to a chloro group. The
magnitude of the changes must also be considered. Simple
changes such as methyl to chloro are usually conservative and
would be considered fine polishing during optimization of a
lead. Other changes are more radical, like growing a methyl
to a phenyl. The more radical changes will explore chemical
space faster, but may miss out on better but more simple

changes. Simple changes may explore space too slowly to be
useful. There is also a potential conflict between the chemistry-
based rejection rules and transforms. Rejection rules can
remove the intermediates created by more primitive trans-
forms so that some transforms must be included explicitly to
occur. An example is the conversion of carbonyl to oxime. This
is a simple chemical reaction, but using transforms, one would
have to take a more circuitous route. Two possible routes would
be (i) reduce bond order (carbonyl to alcohol), change element
type (alcohol to amine), then add atom (amine to hydroxyl-
amine). At this point, route i would fail as structures contain-
ing hydroxylamine would be removed by the chemical rejection
rules. Route ii would start with a change of element type
(carbonyl to imine) and then would fail again due to conflict
with the chemical rejection rules. The strategies used in this
work are as follows.

Simple:
simple chain length changes, e.g. CH2 f CH2CH2,
and swapping H, F, Cl, I, OH.
Complex:
simple chain length changes, e.g. CH2 f CH2CH2;
swapping H, F, Cl, I, OH;
swapping O, N, H;
reduction; oxidation;
ring size changes; and
arylation.
QSAR-Driven Transforms. The similarity principle can

be used to tailor the transformation set. This is an extension
of the concept of isosterism16 employed by a medicinal chemist.
Each transformation in the complex set was scored in the
context of the QSAR model by counting the number of times
a fragment appears in the QSAR training set. The counts were
transformed into relative probabilities by taking a normalized
geometric mean of the counts for each pair of fragments in a
transformation. Transformations that include H do get higher
scores, but this was acceptable. Transformations with very low
probabilities can be omitted from the final set used by the
algorithm. This transformation set will be referred to as
“weighted”. To enhance this still further, a list of chemical
fragments and known isosteres (for example, phenyl and
thiophen) was constructed. For the purposes of counts, matches
that are part of any privileged substructure are ignored.
Exhaustive pairwise combination of the fragments gives 1572
transformations, which were scored as before to give the
“weighted_2” set. The next approach was to compute the vector
of each fragment in QSAR space. Before this can be done, the
empty valences of each fragment must be filled; methyl groups
were used to fill aliphatic valences and phenyl groups for
aromatic valences. Methyl and phenyl groups were used to
minimize the effect on the vector of the fragment. The distance
between the fragments on either side of a transformation can
be computed and merits added for similar fragments. Frag-
ments that had vectors close to the origin were deleted, as they
are not well described by the QSAR space. Now fragments that
were not part of the original QSAR set, but which are similar,
can be introduced. This is the “QSAR-driven” transformation
set. This restriction may not be appropriate if extra factors,
for example, druggability, are important. A change that does
not affect activity but which does improve druggability may
be very desirable indeed. The final strategy was to classify the
transformations into those derived from the QSAR, those from
the isosteres, and the rest. Each transformation within a class
was given an equal score, and the classes were weighted
QSAR:isostere:other in the ratio 7:5:2. This is the classification
transformation set.

Results

For the first test case, the dataset generated by
Scozzafava et al.17 was chosen, as it had already been
shown that a reasonable QSAR model could be built.18

This set was derived from a combinatorial library of 150
compounds (Figure 2), with -log(activity/M) data on
human carbonic anhydrase II ranging from 5.8 to 9.7.
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A linear QSAR model (eq 1) was derived by building
the structures in smiles format, converting to 3D using
Corina,19 and then using the GFA module in Cerius2
with default settings and descriptor sets.

The meanings of the descriptors in eq 1 are PHI,
molecular flexibility index; Jurs-RPCG, charge of most
positive atom divided by the total positive charge;
S_dsN, electrotopological state for sp2 N; N_aaS, elec-
trotopological count for aromatic S; Vm, molecular
volume inside the contact surface. The meaning of the
descriptors is not discussed further, because the point
is not to derive and interpret the model, but to use it as
a component in automated iterative design. Todeschini
and Consonni have published a comprehensive guide
to descriptors20 and their derivations, if further infor-
mation is required.

Each compound in the SAR was used as the starting
structure, with different combinations of the selection,

transform, and rejection strategies. THINK was used
to generate the new structures. The goal was to examine
the improvement in predicted activity, the number of
ideas generated, the running times, and the general
similarity of the generated structures to the original
idea. Failures (when no improved structures were
found) are also recorded. Daylight fingerprints21 com-
bined with a Tanimoto coefficient were used to give a
familiar measure of similarity to aid in the assessment
of the results. The results are presented in Table 2. It
should be kept in mind that there is no absolute way to
assess the results, due to errors in the underlying data,
in the QSAR model, from the incomplete sampling, and
from extrapolations.

The algorithm was able to propose structures with
improved activity (as predicted by the QSAR) for the
great majority of the 150 starting structures, and in
some cases all of them (runs 5, 10). The trend is that
the predicted improvements are greater for ideas with
lower starting activity (Figure 3). This is intuitively
reasonable, as ideas with high activity will be at the
limits of the space described by the training set. It was

Figure 2. The fragments used to build the combinatorial library used in test case 1.

Y ) 7.5 - 0.6PHI - 5.7Jurs-RPCG + 0.2S_dsN +
1.7N_aaS + 0.001Vm (1)

R2 ) 0.81, F ) 127, Q2 ) 0.8, PRESS ) 33.4

Exploiting QSAR Models in Lead Optimization Journal of Medicinal Chemistry, 2005, Vol. 48, No. 5 1641



also found that the algorithm explored chemical space
well, moving away from the starting idea (as measured
by Daylight fingerprint similarity) giving improved
structures with both high and low similarity to the
original idea (Figure 4)

It was also found that the richer transform sets gave
more ideas and better predicted improvements but
sometimes with more failures (runs 1/2, 4/5, and 6/7).
The use of probabilities gave a poorer performance (runs
9/12) but allows the user to force the structure genera-
tion to keep closer, in terms of substructural similarity,
to the SAR. A more appropriate form of weighting is
presented in test case 2. In terms of the search strate-
gies, using an elite of five structures seemed to offer the
best compromise between efficiency and coverage. The
process is stochastic, so that sometimes the order in
which structures are processed can affect the results.
“First in, first out” and “Last in, last out” schemes were
implemented, but in paired test runs (1/1a, 2/2a, 3/3a,

4/4a in Table 2), there was found to be little difference
between the two schemes. Advancing all improved
structures using better sampling took 50% longer to run
as using an elite, but without yielding significantly
better results, so that elite sampling seems to be
adequate (runs 9/11). Using elite sampling, the best
QSAR rejection strategy seems to be threshold to the
training set (runs 3/8/9), with the distance being calcu-
lated in normalized Euclidean space; there are fewer
failures, and the average predicted improvement is
better. This is probably due to the constraints causing
the generator to focus on exploration of the more fruitful
areas of chemical space. Use of other functional forms
did not seem to add much in this case, but the optimal
metric is likely to be dependent on the QSAR model.
The best combination of strategies for this QSAR model
appeared to be elite/threshold/complex. The CPU times
taken (SGI R12K running IRIX6.5) were highly variable
(runs between 720 and 1920 s per idea were observed)

Table 2. Results of Different Structure Generation Strategies Using Test Case 1

structures with improved activity over starting point
strategy

run selection
QSAR

rejection transform

best
improvement

found
av no.
found

average
improvement

average
similarity

no. of
failures

av run
time/s

1 best unlimited basic 1.56 18.61 0.23 0.79 28 519
1a best unlimited basic 1.56 18.66 0.23 0.79 28 492
2 best unlimited complex 2.45 43.71 0.82 0.73 47 1503
2a best unlimited complex 2.45 43.09 1.02 0.73 95 884
3 elite unlimited basic 1.14 30.61 0.22 0.79 28 905
3a elite unlimited basic 1.45 33.66 0.24 0.79 28 588
4 better unlimited basic 1.34 33.21 0.24 0.79 28 1373
4a better unlimited basic 1.56 62.57 0.22 0.79 0 1212
5 better unlimited complex 1.99 68.76 0.63 0.79 0 1653
6 MC unlimited basic 1.56 387.45 0.33 0.79 66 1680
7 MC unlimited complex 2.57 1432.15 0.87 0.65 85 1920
8 elite maxmin complex 2.32 268.86 0.87 0.65 18 720
9 elite threshold complex 2.60 254.56 0.81 0.67 6 768

10 better maxmin complex 2.63 403.44 0.81 0.72 0 1342
11 better threshold complex 2.29 314.65 0.73 0.73 1 1407
12 elite threshold weighted 1.97 19.24 0.23 0.67 50 888

The predicted improvements are relative to the activity of the structure used to start the run.

Figure 3. Plot of predicted improvement in activity against starting activity. Activities are plotted on a logarithmic scale. The
points are color-coded red to blue depending on how many ideas were generated (range 1-153). Data taken from run 8 (Table 2).

Figure 4. Plot of all improved ideas against initial idea, coded by Daylight similarity. Data taken from run 8 (Table 2). The run
code refers to the starting structure formed from the fragments A-F, 1-25 given in Figure 2.
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Figure 5. (a) Structures with name and predicted activity. C16 is the initial idea. Changes have been highlighted with circles.
Data taken from run 2 (Table 2). (b) A continuation of the run, showing the clear breakdown of the unrestrained optimization
which is resulting in oversubstitution in the central ring. (c) Using threshold constraints. The iteration in which the structure
was generated, its predicted activity, and its distance (1-Daylight similarity) to the training set are given. Data taken from run
11 (Table 2).
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and depended on the structure of the idea and more
often on the speed at which third-party programs could
be initiated and executed. A more efficient method
would be to run these continuously in parallel, to remove
the overhead costs.22 These times are too long for live
interaction with a chemist, and further constraints
should be used; these are discussed below.

It is illuminating to look at an example of a single
case taken from run 2 in which the structure generator
is run in unlimited mode, i.e., allow extrapolation away
from the QSAR training set. The structures generated
in the first iteration are reasonable (Figure 5a); the next
set of structures (Figure 5b) do have much better
predicted activities, but the recommended polysubsti-
tution of the central aromatic ring would stretch the
bounds of credulity of most chemists. The inclusion of
threshold constraints does not prevent the same phe-
nomenon from occurring (Figure 5c), but it takes more
iterations (in which many structures are generated). It
should also be noted that the structures are similar
using the Daylight fingerprint measure, illustrating a
known blind spot in this metric.

A good test of the process is to investigate whether
one can jump from one starting structure in the SAR to
another. By default, a record is kept of all structures
that have been generated, and this is initialized with
the QSAR training set to stop the program from
regenerating what is already known. The next experi-
ment was to turn this off, so that it would be possible
to regenerate other members of the training set. This
is useful for investigating the transformation rules and
sampling issues. It is reasonable to expect that not every
structure will be accessible from every other structure:
some of the starting and end points may be too dis-
similar, or even too similar, or an end point might be
by-passed as “better” structures are found. Four of the
less active members of the QSAR set were chosen at
random as starting points (A15, C16, D10, and F10),
and strategies of elite/threshold/complex were used.
The combinatorial nature of the set makes it easy to
visualize the other structures discovered (Figure 6). As
might be expected, the jumps seem to follow along rows
and columns, rather than being more spotted. Some
rows (A, B) and columns (18, 19) are sparsely populated.
Substituents 14 and 17 are not seen, possibly due to an
overly strict rule for imine rejection. Fragments B, 18,
and 19 would require many modifications to be gener-
ated from the other reagents, so they may be sampled
more with a more extensive search. To get to products
containing fragment B from A or D requires four chain
length modifications at least. Using an arbitrary cutoff
of 1000 nM, many the inactive compounds contain
reagent A (8/25 inactive), so one would not expect this

fragment to be regenerated as often during an optimiza-
tion-driven search.

The second test case selected was based on 38 H3
receptor antagonists from Miko et al.,23 with activities,
as -log(Ki/M), spread between 5.9 and 8.6. The same
procedure as above was used to generate the QSAR
model given in eq 2:

where the descriptors are IAC-Total, the total infor-
mation content; AlogP98, Ghose-Crippen log P; CHI-
V-3_P, the third-order valence-modified connectivity
index; and SC-O, the number of atoms. This set is made
up of congeneric molecules (Figure 7), with a low-quality
QSAR, which is a more interesting and more realistic
challenge. All runs were done using a threshold strat-
egy, based on the results of the previous experiment.
THINK was used to generate the new structures.

For this test (Table 3), a privileged substructure was
used, so that generation was confined to the phenoxy
ring and R3 ) piperidin-1-yl. As a control, the experi-
ment was performed without the privileged substruc-
ture (run 1, Table 3). Only 13 of the 38 starting points
led to structures with predicted improved activity, which
dropped to 11 when the privileged substructure was
used (run 2, Table 3), even with more extensive sam-
pling strategies. Increasing the diversity of the trans-
formation set makes matters worse (run 3, Table 3).
This reflects the much smaller training set, which only
covers QSAR space sparsely. Using the QSAR-driven
transformation set is a marked improvement (run 4,
Table 3), given that a lower sampling strategy, elite, was
used. However, using the classification set, in which the
different classes of transforms have been weighted,

Figure 6. Map of the other members of the combinatorial library regenerated from four starting points, A15 (yellow), C16
(magenta), D10 (blue), and F10 (green).

Figure 7. A schematic representation of the congeneric series
of molecules used in test case 2.

Y ) 7.0 - 0.06IAC-Total - 0.46AlogP98 +
0.6CHI-V-3_P - 0.19SC-O (2)

R2 ) 0.63, F)15, Q2)0.43, PRESS ) 4.6
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rather than the transformations themselves, gives the
best results (run 5, Table 3), even though the use of the
privileged substructure has greatly constrained the
available chemical space. The ideas that are generated
are highly similar (average similarity ) 81%) using the
Daylight fingerprint as a measure (Figure 8). In the
example given, all bar one of the generated structures
were more than 80% similar to the starting structure,
and the core structure has been maintained, which is
comforting to the chemist (Figure 9).

The experiment was repeated using RandSmi instead
of THINK as the structure generator (Figure 10). The
first point to note is that the chemical and privileged
substructure filters removed 90% of the structures
generated at the first pass. It was still possible to
generate less desirable structures, for example, an

enamine, highlighting one of the fundamental issues of
de novo structure generation. RandSmi performed well
with the starting structures with lower initial activities,
as did THINK.

The regeneration experiment was repeated, and the
results are illustrated by drawing a line between two
numbers if it was possible to regenerate one structure
starting from the other (note that the line will not be
reversible, as one is always trying to improve activity).
The results using the THINK engine are given in Figure
11. When the QSAR-driven transformation set was
used, the regeneration level was poor. It can be seen
that the classification strategy gives a much higher level
of regeneration of the structures in the QSAR set, giving
increased confidence that the other structures generated
will also be attractive. The same experiment using the
RandSmi engine gives intermediate behavior, implying
that the transformations are of the right type, but need
to be richer (Figure 12).

Discussion

The fundamental question that this paper tries to
address is that we can use a QSAR model to predict
activity, given a structure, but can we predict a struc-
ture, given an activity model? Several approaches have
been tried, the most obvious being brute force. However,
this quickly becomes infeasible unless the chemical
space can be reduced. Combinatorial libraries offer a
way of proceeding, as others have successfully shown.24-26

One is limited (if that is the right word, given that the
size of the virtual library sizes can approach several
orders of magnitude) to specific changes at a small
number of sites on the molecule, or specific reactions, if
the goal is facile synthesis. This is appropriate in the
early stages of optimization, but not in the later stages,
when a chemist may be looking to handcraft a molecule
to deal with metabolism issues, for example. The
potential chemical space accessible may be even larger
and would be quite tedious to express in library terms.
Using a set of generic transformations captures this
richness in a general and transferable form. The ap-
proaches are complementary, and the choice of strategy
will depend on the chemistry of the series under
consideration.

It is also possible to use rigorous graph-theoretic
procedures to deconvolute from the descriptors to the
structures.27-31 The choice of descriptors that can be
used is limited to descriptors derived from the molecular
graph, which may in turn limit the quality of the QSAR.
In addition, it is possible to hit pathological conditions
caused by long-range changes that exceed the neighbor-
hood of the descriptors employed. This seems to have

Table 3. Results of Different Structure Generation Strategies Using Test Case 2

structures with improved activity over starting point
strategy

run selection
QSAR

rejection transform

best
improvement

found
av no.
found

average
improvement

average
similarity

no. of
failures

av run
time/s

1 elite threshold weighted 0.81 10.08 0.27 0.70 25 177
2 MC threshold weighted 0.66 3.55 0.09 0.78 27 125
3 MC threshold weighted_2 0.15 1.00 0.04 0.72 33 78
4 elite threshold QSAR-driven 0.44 5.22 0.09 0.76 29 100
5 elite threshold classified 0.89 8.75 0.29 0.81 18 205
6 elite threshold RandSmi 1.08 11.27 0.28 0.67 23 245
a The predicted improvements are relative to the activity of the structure used to start the run.

Figure 8. Plot of all improved ideas against initial idea, color-
coded by Daylight similarity (red, < 0.7; orange 0.7-0.8; cyan
0.8-0.9; green 0.9-1.0). Data taken from run 5 (Table 3).

Figure 9. Structures generated from the starting structure
in the top left. The activities given are predicted from the
QSAR model. Data taken from run 5 (Table 3).
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occurred in the work of Faulon,32 in which an R-hydroxy
acid group is moved from one benzyl group to another
benzyl group 4 atoms down the backbone of the mol-
ecule, a change that would seem quite radical to most
chemists and unlikely to preserve activity. Finally, it
should be acknowledged that QSAR models are imper-
fect: it would seem preferable to generate families of
suggestions, which can be assessed, rather than a few
mathematically correct structures that may not appeal

for reasons outside the scope of the QSAR model. QSAR
models do not capture all the implicit understanding of
the SAR obtained by a medicinal chemist after intensive
study and experience of the chemical series in question.
It would be possible to introduce greater or lesser
degrees of automation into the process. While most
users would be content just to choose the next set of
structures to use in further iterations, a more sophis-
ticated user could update the rejection rules and the
transformation probabilities after each iteration. On the
other hand, maximal common subgraph techniques
could be used to derive fragments to be part of trans-
formations or to determine possible privileged substruc-
tures in the training set.

Heuristic approaches, like the strategy presented
here, have also been tried. An example is the program
GROK,33 which used a genetic algorithm to manipulate
a set of input structures according to a user defined
fitness function. This program seems to have been very
fast and efficient, but also seem to have suffered from
issues of extrapolation, pathological conditions being
found in many of the test cases examined. The most
important difference between this work and previous
studies is the explicit provision made for extrapolation
and consequent prediction errors in the QSAR model.
It has long been known that one of the major pitfalls of
QSAR, especially when linked to de novo structure
generation, is extrapolation into unreasonable areas of
space. Not only will the structures generated become
increasingly dissimilar to the original idea, but they will
also become distant from the set of structures used to
train the QSAR model, so that predictions will become
unreliable. A major focus of this work has been on trying
to limit the generation of structures to prevent this issue
from arising. As Walker et al. put it,34 “It is crucial that
the model domain is known to the user so the user may
verify if a given substance can be modeled”. The
threshold strategy was the most effective at restraining
generation to producing similar chemical structures.
The choice of the value was subjective, being based on

Figure 10. Structures generated from the starting structure in the box, using the RandSmi program. The activities given are
predicted from the QSAR model. Data taken from run 6 (Table 3).

Figure 11. A plot showing which structures could be regener-
ated from another structure in the QSAR set, using both
QSAR-driven and classification transformation strategies.

Figure 12. A plot showing which structures could be regener-
ated from another structure in the QSAR set, using RandSmi.
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a manual inspection of a clustering dendrogram. The
most reasonable value for the cutoff would reflect the
confidence radius of the QSAR model. It is possible to
use principal component analysis and the Hotelling
statistic to declare 95% confidence limits around de-
scriptors to account for variance, which in turn can be
used to set a Mahalanobis distance for constraints.
Alternatively, a measure, P(x), of the degree of novelty
of an observation x (in this case a structure) can be
assessed according to the formula35

where σ is a smoothing factor, d is the number of
dimensions (descriptors), and n the number of com-
pounds in the training set. This gives information about
an individual query, in addition to the validation of the
QSAR model provided by hold-out sets. The value of σ
should be set to avoid the extremes of large bias or large
variance; the recommendation in the original paper35

is to set σ to the average of the distance between each
structure in the training set and its 10 nearest neigh-
bors, averaged over all structures. The effectiveness of
this approach toward novelty prediction for controlling
structure generation is an area of ongoing research.

This work has only used a single QSAR model to drive
the generation process. This was for simplicity of
validation rather than any algorithmic limitations. Lead
optimization is a multidimensional search for com-
pounds that have the right blend of activity, selectivity,
and drugability. Research has already shown that in
silico multidimensional optimization is a powerful tool
as applied to combinatorial libraries.36,37 The challenge
is to assess the degree of extrapolation when two
independent QSAR models are used. For example, the
QSAR training sets for a general model of permeability
and for a particular chemical series binding to a receptor
will have little or no overlap, which will cause the
Hotelling approach to break down. The approach fa-
vored would be to optimize a desirability function made
up of terms for activity and drugability. We have already
introduced a bias for retention of a privileged substruc-
ture, so that adding other biases would be straightfor-
ward.

These measures only form a stop-gap for rigorous
model validation and iteration using new experimental
data. Staying close to what a chemist knows how to
make is also important, as it mirrors the issue of
extrapolation. This is another factor pushing toward
suggesting structures that should be easy to synthesize,
so that the drug discovery cycle is accelerated rather
than impeded by the application of QSAR models. The
experiments described in this paper have concentrated
on making improvements on a starting idea. It might
be informative to stand the process on its head, to look
for changes that are deleterious to activity, which would
delineate areas of SAR to avoid or where the model
could be tested quickly with a very small amount of
experimental data.

The effect of changing several parameters has been
investigated, but the nature and the weighting scheme
used in the transformation set seems to have the most
impact on the quantity and quality of the structures

generated. We have used two programs for performing
structure generation: because of the modular nature
of the process, other structure generators could be used
in this process with minimal changes.38,39 It is antici-
pated that many of the issues that affect the structure
generation programs used here will be the same for
other approaches.

Conclusions
A new protocol for performing inverse QSAR has been

described and applied to two literature QSAR sets. It
has been shown that novel improved (as predicted by a
QSAR model) structures can be generated automatically
by starting with chemists’ ideas. This has been made
practicable by addressing the key issues of avoiding
extrapolation of the QSAR model, using constraints to
keep the generated structures sensible, and using a
definition of similarity based on the QSAR model to
construct the set of transformations.
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